Chapitre 15
Dérivation

Plan du chapitre

1 Compléments sur la dérivabilité . e 1
1.1  Dérivable donc continue (mais pas l'inverse!) . 1
1.2 Calcul de limite par le taux d’accroissement 2
1.3 Fonction dérivée. . 3
1.4  Dérivées a droite et a gauche . 4
2 Extremum e e e e e e 5
3 Lesgrands théoréme sur la dérivation . 7
3.1 Théoreme de Rolle . . 7
3.2  Lethéoreme des accroissements finis . 8
3.3  Dérivation et monotonie. 9
3.4  Fonction lipschitzienne . 10
3.5  Inégalité des accroissements finis 11
4 Lethéoréme de lalimite de la dérivée . 12
4.1 Notion de limite épointée . 12
4.2  Théoreme de la limite de la dérivée . 13
5 Fonctions de classe ¢ . 15
5.1  Définition . . 15
5.2 Calculer une dérivée n-ieme . 16
5.3  Propriétés des fonctions de classe ¢ . 17
6 Fonctions complexes 19
7 Meéthodes pour les exercices. 22

Hypothese

e [ etJ sont des intervalles de R non triviaux.

e D et D' sontdes parties de R qui peuvent s’'écrire comme une réunion d’un ou plusieurs intervalles
non triviaux, par exemple D = R*, D = Dy, ou encore D = [ -3, —2} UR,.

De plus, a est un point de D (donc forcément fini).

1 Compléments sur la dérivabilité

1.1 Dérivable donc continue (mais pas 'inverse!)

| Théoréme 15.1 |

Soit f: D — R. Si f est dérivable en g, alors f est continue en a.
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Dérivation

La réciproque est fausse ! Penser aux fonctions typiquement non dérivables, comme x — |x|, x — /X,
X > arccosx ... qui sont pourtant continues.

Démonstration. Soit f dérivable en a, de sorte que

f(x) —fa)

X—a

tend vers une limite finie qu’on note ¢

(on aen fait { = f'(a)). Supposons par 'absurde que f n’est pas continue en a. Alors f(x) ne tend pas vers f(a)
lorsque x tend vers a. En prenant la négation de la définition de la limite, il existe € > 0O tel que

V6 >0 IxeD |x—a|<6 et |f(x)—f(a)>e

1 1
Pour tout n € N*, en prenant § = — > 0, il existe un réel x, dans D qui vérifie |x, —a| < — et |f(x,) — f(a)| > €.
n

On construit ainsi une suite (x,) qui tend vers a. Par composition de limite, on a

R
n n—r—+oo a — f(xn) _f(a) { — f(xn) _f(a) ‘£|
f(X) B f(a) Y] Xp—a N—r—oo X, —a N— o0
X—a X—a
+ , . f( n) —f((,l) :
Or, comme |f(x,) — f(a)| > € et |x, —a| — 07, on peut montrer qu’en fait — oo, ce qui est
Xp—a
absurde car |¢| est fini et par unicité de la limite. O

1.2 Calcul de limite par le taux d’accroissement

Si f est dérivable en a, alors fx) = fla) f'(a). Cela peut permettre de calculer certains types de limites.
XxX—a x—a
. sinx
Exemple 1. Montrer que lim — = 1.
x—0 X

Il est conseillé de toujours poser la (bonne) fonction f pour appliquer cette technique et de calculer
f'(x) consciencieusement. Sinon vous risquez de vous tromper !

V3x—+/3
Exemple 2. Calculer lim ﬂ
x—1 x—1



1.3 Fonction dérivée

| Définition 15.2 I_

Soit f : D — R une fonction. On dit que f est dérivable si elle est dérivable en tout point de D. On note
alors

x— f'(x)

: DR |

On dit que f” est 'application dérivée de f ou simplement la dérivée de f.

On note parfois 2' (D, R), ou juste 2" (D) I'ensemble des fonctions dérivables sur D.

1
Exemple 3. o Lafonction x — — est dérivable (sur R") car elle 'est en tout point a de R*.
X

T T
o lafonction tan est dérivable (sur Dy,;,) car elle I'est en tout point de Dy, = U } —3 + 2k, > +2km [
keZ

c La notation  est réservée aux fonctions:
Oui:  f'(x) sin'(x)  (u?) =2ud

Non!: f(x) (vx)' (Incos(x)) = —Lcos(x)’

COSsXx

e Pour toute partie X C D, I'assertion “f est dérivable sur X” ne signifie pas la méme chose que “f|, est

dérivable”, cf exemple suivant.

Exemple 4. Soit f la fonction définie sur R par f(x) = |x|.

e Il est clair que f n'est pas dérivable en 0. En particulier, elle n’est dérivable ni sur R_, ni sur R,..

e Cependant, la restriction de f a R, est dérivable (sur R,), car f|g, coincide avec la fonction x — x
restreinte a R . Idem pour f ‘R .

| Théoréme 15.3 |

Soit f : D — R. Si f est dérivable (sur D), alors f est continue (sur D).
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Dérivation

1.4 Dérivées a droite et a gauche

| Définition 15.4 l

Soit f : D — R une fonction.

e Ondit que f est dérivable a droite en a si la limite suivante existe et est finie :

/ T f(x _f(a)
fa(a) —%I% —a

e Ondit que f est dérivable a gauche en a si la limite suivante existe et est finie :

futay = iy PO

La valeur fg’(a) est appelée la dérivée de f a gauche en a.

La valeur f/(a) est appelée la dérivée de f a droite en a. .

Exemple 5. Montrer que la fonction f : x — |x| est dérivable a gauche et a droite en 0 et calculer f,(0) et f;(0).

Remarque. f est dérivable a gauche (resp. a droite) en a ssi ¢y admet une demi-tangente a gauche (resp. a
droite) en a. Dans ce cas, la pente de cette demi-tangente est égale a f,(a) (resp. f;(a)).

Remarque. Les remarques suivantes parlent généralement de dérivée a gauche, mais s’adaptent également pour
les dérivée a droite.

e Pour étudier la dérivabilité a gauche, on étudie donc une limite a gauche du taux d’accroissement. Cepen-
dant:

- Dans certains cas, la limite a gauche du taux n’a pas de sens. Par exemple, si f est définie sur R, la
notion de dérivée a gauche de f en 0 n'a pas de sens.

— Dans d’autres cas, la limite a gauche du taux coincide avec la limite usuelle. Par exemple, si f est
définie sur R_, alors f est dérivable a gauche en 0 si et seulement si f est dérivable en 0 et si c’est le

cas, £1(0) = £/(0).

e Si f est dérivable a gauche en g, alors f est continue a gauche en a. En effet,
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Dérivation

| Théoréme 15.5 |

Soit f : D — R une fonction. Alors

f estdérivable a gauche ena (si cela a un sens)
festdérivableena  ssi f estdérivable a droiteena  (si cela a un sens)

fela) = fa(a) (si ces deux valeurs ont un sens)

De plus, lorsque c'est le cas, on a f'(a) = f;(a) = fi(a).

Exemple 6. La fonction f : x — |x| est dérivable a gauche et a droite en 0, mais f,(0) = —1 et f3(0) = 1. Comme
f2(0) # f3(0), f nest pas dérivable en 0.

2 Extremum

Définition 15.6 - Rappel : extremum (global)

Soit D une partiede R et f : D — R. On dit que ...

e fadmetun maximum (global) enasi VxeD  f(x) < f(a)

e fadmetun minimum (global) enasi VxeD  f(x)> f(a)

e f admet un extremum (global) en a si f admet en ¢ un maximum (global) ou un minimum (global).

La valeur maximale de f peut étre atteinte en plusieurs points a;,ay, - - -. On distinguera bien LE maxi-
mum de f, i.e. la valeur max f = f(a;) = f(az) = ... et LES points a;,a, - - - EN lesquels le maximum
est atteint.

| Définition 15.7 — Extremum local I_

Soit D une partiede R et f : D — R. On dit que ...

e fadmetun maximum local enasi f < f(a) au voisinage de a :

IN>0 VxeDNla—n,a+n]  f(x) < fla)

e fadmetun minimum local enasi f > f(a) au voisinage de a :

>0 VxeDNla—n,a+n]  f(x)> f(a)

e fadmet un extremum local en a si f admet en a un maximum local ou un minimum local.

Remarque. Un extremum global est un extremum local. La réciproque est fausse : la fonction x — | x| admet un
maximum local en 0 mais ce n’est pas un maximum global.

Si f admet un maximum local (resp. global) en a, alors — f admet un minimum local (resp. global) en a.
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Dérivation

| Définition 15.8 |

. Soit f : D — R une fonction. On dit que a est un point critique de f si f est dérivable en a et f'(a) = 0.

Remarque. Dit autrement, un point critique est un point o1 f posséde une tangente horizontale.

Définition 15.9 l

Soit a € 1. On dit que a est un point intérieur de / si a est un point de I qui n’est pas une extrémité de /.

]
On note / 'ensemble des points intérieurs de /.

Sil= [0, 1] , alors les points intérieurs de / sont tous les points de } 0,1 [ Onadonc/ = ]0, 1 [

| Théoréeme 15.10 |

Soit f : I — R une fonction dérivable.

]

acl

Si alors  aestun point critique de f, i.e. f'(a) =0
f admet un extremum local en a

Remarque. Laréciproque du Théoreme 15.10 est fausse: un point critique n’est pas nécessairement un extremum
local. Par exemple, la fonction f : x — x> admet 0 pour point critique, mais ce n’est ni un maximum local, ni un
minimum local.

]
Remarque. Le résultat du Théoreme 15.10 tombe en défaut si a est une extrémité de / (donc a ¢ I). Par exemple
la fonction identité sur [0, 1] admet un minimum en 0 et un maximum en 1 alors que ce ne sont pas des points
critiques.

Démonstration. On démontre ce résultat lorsque f admet en a un maximum local. Par définition, il existe ) > 0
tel que pour toutx € IN [a—n,a+n],ona f(x) < f(a), donc

fx)=fla) <0
fx) = f(a)

quand x tend versa™, on, a:

e Six>a,ona < 0. Or, f est dérivable en a, donc dérivable a droite en a. Par passage a la limite

f(a)

a

fia) = tim 7

x—at X

<0

si bien que f'(a) = f)(a) <O0.
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Dérivation

f(x) = fla)
x—a
quand x tend versa—, on, a:

e Six<a,ona > 0. Or, f est dérivable en a, donc dérivable a gauche en a. Par passage a la limite

/ — 1
T (a) x—lglf x—a

si bien que f(a) = f,(a) > 0.
Finalement, 0 < f'(a) < 0 donc f'(a) = 0. O

| Méthode |

Pour trouver un extremum global, on peut recourir a un tableau de variations.
Pour un extremum local, cela marche aussi, mais on verra d’autres outils plus précis plus tard.

3 Les grands théoreme sur la dérivation

3.1 Théoreme de Rolle

| Théoréme 15.11 — Théoréme de Rolle |

Soita,b € Rtelsquea < b, et f: [a, b] — R une fonction telle que
1.
2.
3.

Démonstration.



3.2 Lethéoréme des accroissements finis

Théoreme 15.12 — Théoréme des Accroissements Finis (TAF)

Soita,b € Rtelsquea < b, et f: [a, b] — R une fonction telle que
1.

2.

Démonstration. On pose
g: [a,b] —R

s oy IO @

p—p (x—a)

La fonction g est continue sur [a, b] et dérivable sur ] a,b [ comme somme et produit de telles fonctions. De plus,

O
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Dérivation

<In(x+1)—In(x) <

==

1
Exemple 7. Montrer que pour toutx > 0,ona 1
X

3.3 Dérivation et monotonie

On rappelle que / est un| intervalle |.

| Théoréme 15.13 |

Soit f : I — R une fonction continue sur / et dérivable en tout point intérieur de /. Alors :
o
e f est croissante sur / si et seulement si ' > 0 sur /.
o
e fest décroissante sur / si et seulement si f < 0 sur /.

o
e fest constante sur [ si et seulement si f = 0 sur /.

c Ce théoreme tombe en défaut si on ne I'applique pas sur un intervalle. Contre-exemple : la fonction

1
x — — aune dérivée négative en tout point de R*, mais n’est pas décroissante sur R*.
X

Démonstration. On ne démontre que la premiere équivalence. On procede par double implication.

]
e Supposons f’ > 0 sur I et montrons que f est croissante.
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Dérivation

e Supposons f croissante. Soit a un point intérieur de / : montrons que f’(a) > 0. Soit x € I tel que x > a (un
o
tel x existe car a € I). Comme f est croissante,

f(x) - fla)

X—a

>0

+

et en passant a la limite quand x tend vers a*, comme f est dérivable en a, on obtient f'(a) > 0.

| Théoréeme 15.14 |

o
Soit f: I — R une fonction continue sur / et dérivable sur /. Les assertions suivantes sont équivalentes :

e f eststrictement croissante sur /.

e />0 sur I (i.e. f est croissante), et pour tous a,b € [ tels que a < b, on af"]a b[ Z0.

]
La deuxiéme condition peut également se réécrire : f est positive sur / et sur tout intervalle non trivial J, f’ n’est
pas identiquement nulle sur J. En particulier, si f > 0 et f' ne s’annule qu’en un nombre fini de points, alors f
est strictement croissante.

Exemple 8. La fonction x — x — sinx admet pour dérivée la fonction x — 1 — cosx, qui est positive et ne s’annule
que sur 277, donc ne s’annule identiquement sur aucun intervalle non trivial. Ainsi, la fonction x — x — sinx est
strictement croissante (sur R).

3.4 Fonction lipschitzienne

Définition 15.15 — Fonction lipschitzienne

Soit f : I — R une fonction et K € R. On dit que f est K-lipschitzienne si

ey el |f(x)=fO)| <Kkl §

Une fonction f est dite lipschitzienne s’il existe K € R tel que f est K-lipschitzienne.

Exemple 9.
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Dérivation

o Lafonction x — |x| est 1-lipschitzienne (mais aussi 2-lipschitzienne, w-lipschitzienne...) car :
VeyeR x| =yl <Tx|x—y|
o Lafonction x — x” n'est pas lipschitzienne, mais sa restriction a [ -1, 1] est 2-lipschitzienne car

veye [-1L1] [Py =|(x+y)(x—y)
< ety x x—yl
< (Pl +[y]) x [x =]
<2x—y|

Exemple 10. Montrer que la fonction f : x — /x n'est pas lipschitzienne.

Théoreme 15.16 |

Toute fonction lipschitzienne est continue.

Démonstration. Soit f : I — R une fonction K-lipschitzienne et a € I. Montrons que f est continue ena. On a:
|f(x) = f(a)] <K|x—a| —> 0
X—a

donc f(x) — f(a). Ainsi f est continue en a. Par arbitraire sur a, f est continue (sur /). O
Xx—a

3.5 Inégalité des accroissements finis

Théoréme 15.17 — Inégalité des Accroissements Finis (IAF)

o o
Soit f : I — R une fonction continue sur / et dérivable sur /. S’il existe K € R tel que pour tout x € /, on
a|f(x)| <K, alors

Vx,y €1 lf(x)=f)| <Kl|x—y| (cad f est K-lipschitzienne)

Démonstration. Soit x,y € I. Montrons que |f(x) — f(y)| < K|x—y|. Six =y, c’est évident. Si x # y, quitte &
échanger les roles de x et y, on peut considérer que x < y. Appliquons le TAF a f sur [x, y] : O

e f est continue sur [x,y] car f lestsurl.

e f estdérivable sur |x,y[ car tout point de ] x,y[ est nécessairement un point intérieur de / (méme six ouy
sont des extrémités de I).
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Dérivation

Ainsi, il existe ¢ € |x,y] tel que Jw = f'(c) donc
—— = |f'(c)| <K

X

'f(X) f(y)’
y

D’ol1 on conclut en multipliant par |x — y| qui est positif.

Remarque. Limplication de I'TAF est en fait une équivalence : si f est K-lipschitzienne (et dérivable en tout
point intérieur de /), alors | f’| est majorée par K.

| Corollaire 15.18 |

Soit f : [a,b] — R de classe €. Alors f est K-lipschitzienne avec K = niax] |7 (x)|.
X€ |a,b

Démonstration. Comme f est de classe ¢, f' est continue sur [a, b] donc par composition il en va de méme
pour |f’]. Par le théoréme des bornes atteintes, la fonction | | est donc bornée sur [a, b] et atteint ses bornes. En
particulier, elle atteint son maximum et on peut poser

K:= max_|f'(x)|
xe a,b]

Alors, par I'TAF, pour tous x,y € [a,b], onabien [f(x)— f(y)| < K|x—y]. O

Exemple 11. Montrer que pour tous x,y € R, on a |arctanx — arctany| < |x —y|.

4 Le théoreme delalimite de la dérivée

4.1 Notion de limite épointée

Avant de pouvoir aller plus loin, il faut étendre la notion de limite a un cadre légérement plus général.

Définition 15.19 — Limite épointée

Soit f : D — R une fonction. On dit que f admet une limite épointée en a si la fonction f } D\{a} admet
une limite en a. On la note

La fonction f est donc définie en a, mais la valeur de f(a) n'a aucune incidence sur I'existence éventuelle et la
valeur de la limite épointée en a.
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Dérivation

Exemple 12. f:x+— L—xzj vérifie lim f(x) = —1.
0

| Théoréme 15.20 |

Soit f : D — R une fonction. f admet une limite en a si et seulement si f admet une limite épointée en a
qui vaut f(a). Dans ce cas,on a:

lim £(x) = /(@) = lim /(x)

x#a

En particulier, on a méme que f est continue en a.

Remarque. Ce théoréme est particulierement utile lorsque f(x) a une expression différente lorsque x # a et
lorsque x = a.

In(1+x)
. 0 '
Exemple 13. La fonction f : x — x six# admet une limite en 0 si et seulement si lim f(x) = £(0),
1 six=0 20
£
. In(1+x) . N . -
ie. 111‘1(1) ——— = 1. On peut vérifier que c’est bien le cas, donc f admet une limite en 0 et en particulier est
xX— X
x#0

continue en 0 puisque 0 € Dy.

Exemple 14. Dans |'Exemple 12, on a lirr(l) f(x) =—1+ £(0), donc f n’'a pas de limite en 0 (et est encore moins
xX—

x#£0
continue en 0).

| Théoréme 15.21 |

Soit ' : D — R une fonction. Les assertions suivantes sont équivalentes :
e f admet une limite épointée en a

e fadmet une limite a gauche en a (si cela a un sens) et a droite en a (si cela a un sens), et ces deux
limites sont égales (si elles ont toutes les deux un sens).

De plus, lorsque ces assertions sont vérifiées, toutes ces limites sont égales :
lim f(x) = lim f(x) = lim f(x)

x—a x—a~ x—at

x#£a

4.2 Théoreme de lalimite de la dérivée

Soit f : D — R une fonction qu’on suppose dérivable sur D\ {a}. On souhaite savoir si f est aussi dérivable en a.

f(x) — fla)

On pourrait étudier la limite du taux d’accroissement quand x tend vers a. Mais dans certains (rares)

cas, trouver cette limite est difficile et il est plus simple d’utiliser le résultat suivant pour conclure.
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Dérivation

Théoréeme 15.22 — Théoréme de limite de la dérivée (TLD)

Soit f : D — R une fonction dérivable sur D\ {a} et continue en a. Pour tout / € R :

limf/(x) =0 = im Z¥ =A@ _,
xX—a x—a XxX—a

x#£a
En particulier :

e Si/ € R, alors f est dérivable en a et f'(a) = /.

e Si/ = +oo, alors lim fx) —fla)

= oo, et donc f n'est pas dérivable en a.
x—a xX—a

f(x) = fla)

X—a

Autrement dit, si ' admet une limite épointée (finie ou non) en a, alors tend vers la méme limite en

a.

Remarque. Dansle cas / € R, on a en particulier lim f'(x) = ¢ = f(a), de sorte que f’ est continue en a.
xX—a

Dans le second cas, on a en particulier que ¢y admet une tangente verticale en a.

Démonstration. Soit I I'intervalle de D qui contient a. Soitx € I\ {a}. On pose
[a,x] six>a
J= ]
[x,a] six<a

Comme / est un intervalle, on aJ C I. Appliquons le TAF a f sur J. f est continue sur D donc en particulier sur J.
De plus f est dérivable sur D \ {a} donc est dérivable sur ]a,x[ (resp. sur ]x, a [) six > a (resp. six < a). Ainsi, le
TAF s’applique : il existe c, strictement compris entre a et x tel que

f(x) = f(a)

X—a

/
filex) =
Or, comme c, est strictement compris entre a et x, on a, par composition de limites :

limec, =a avec c¢ a
limc, X 7

x#a . /
o = lim f'(cy) =/
lim f1(X) = ¢ e
X#a
Puisque f'(cy) = M, on en déduit que
xX—a
i 1010 _,
(fa) T
O
AP . . e f(x)—f(a)
Pour vérifier si f est dérivable en a, on regarde le plus souvent si le taux d’accroissement ————— admet une
xX—a

limite finie quand x tend vers a. Cependant, il arrive que cette limite soit compliquée a calculer pour certaines
fonctions f, tandis que la limite de f'(x) quand x tend vers a est plus simple. Le théoréme de la limite de la
dérivée s’avere alors tres utile.
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Dérivation

| Méthode |

Pour déterminer si f est dérivable en a avec le TLD :

1. On calcule f/(x) pour x “proche de a” mais pas égal a a.

2. Onregarde la limite de f’(x) quand x tend vers a et on conclut par le TLD.

Exemple 15. Montrer que la fonction f : x — cos (\/E) est dérivable en 0 et calculer f'(0).

5 Fonctions de classe ¢

5.1 Définition

Par convention, on note f 0) = f.

| Définition 15.23 — Ensembles £" I_

Soit n € N*. On définit (de maniére récursive) qu'une fonction f : D — R est n fois dérivable si la fonction
f (=1). D — R est dérivable, et la dérivée de cette fonction est alors notée f ) On a ainsi

O — ¢ fO = g F@ = g etc.

On note 2"(D,R), ou juste 2" (D), 'ensemble des fonctions n fois dérivables sur D a valeurs dans R.

La valeur de £ (a) est appelée la dérivée n-ieme de f en a.

Comme f 0 = f, par convention, toute fonction est “0 fois dérivable”. Plus précisément cette assertion n’affirme
rien et elle est considérée comme vraie (vide logique).
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Dérivation

| Définition 15.24 — Classe €”" et €~ |

Soit f : D — R une fonction et n € N.

e Ondit que f est de classe € si f est n fois dérivable et si f (") est continue.

On note ¢ (D,R) ou juste " (D) 'ensemble des fonctions de classe ¢” sur D a valeurs dans R.
On note ¢ (D,R) ou juste ¢~ (D) I'ensemble des fonctions de classe ¢~ sur D a valeurs dans R.

e On dit que f est de classe € si f est de classe " pour tout n € N. E

Remarque.
e En particulier (D) = € (D) est 'ensemble des fonctions continues sur D a valeurs dans R.
e Pourtoutn € N,ona %" (D) c 2"7(D) c €"(D).
- Eneffetsi f € €"(D), alors f est en particulier n+ 1 fois dérivable et donc f € 2" (D)

— Par ailleurs, si f € gntl (D), alors f est en particulier n fois dérivable, et comme f () est dérivable,
elle est également continue. D’ou1 f € €™ (D).

e Plus généralement, on peut écrire :
¢ (D) > €' (D) D €*D) > ... >€~(D)
(D)= (] ¢"(D)
neN

Exemple 16 (Important !). Toute fonction polynomiale est de classe 4. Toute fonction rationnelle est de classe
% (sur son ensemble de définition).

Exemple 17.
o Les fonctions exp, In, cos, sin, tan, arctan... sont de classe €~ (sur leur ensemble de définition).
o Soit f:x+ |x|.Ona f € °(R) mais f ¢ 2'(R) car f nest pas dérivable en 0.
3
o Soit f:x s x/>.0Onaf e ¢ (Ry) mais f ¢ 2*(R,) car pour toutx > 0, f/(x) = 5\/}, donc f’ n'est pas

dérivable en 0.

5.2 Calculer une dérivée n-iéme

| Méthode |

Pour calculer la dérivée n-ieme d'une fonction f :

1. On trouve d’abord au brouillon une formule de récurrence pour f @),

2. On démontre cette formule par une récurrence, en n'oubliant pas de justifier la dérivabilité de f @)

pour calculer f7+1).

Toutefois, il n'est pas nécessaire de justifier la dérivabilité de f () si on a montré au préalable que f est de
classe €.

1
Exemple 18. Soitn € N. Calculer la dérivée n-iéme de la fonction f : x — Ty
X



Remarque. On évitera d’écrire “ (=) ", cette fonction ne serait pas bien définie (sauf cas tres particuliers...).

5.3 Propriétés des fonctions de classe ¢

| Théoréme 15.25 — Combinaisons linéaires |

Soit n € NU {+e}. Pour toutes fonctions f,g € (D) et A,u € R,onaAf + ug € ¢"(D). De plus, si
n 7 oo,
VxeD  (Af+ug)" (x) = Af"(x)+ug" (x)

Théoréme 15.26 — Produit — Formule de Leibniz |

Soitn € NU {+-oo}. Pour toutes fonctions g, € ¢"(D), ona gh € €" (D). De plus, sin # +eo,

veeD  (gh)W(x) =Y (k) ¢ () 0 (2)

k=0

Exemple 19. Soit f : x — x>¢** avec A € R. Montrer que f € €~ (R) et calculer /") pour toutn € N,
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Le calcul ci-dessus nécessite une certaine rigueur. Comme g(k) (x) = 0 pour tout k > 3, on peut étre tenté d’écrire :

n 2
(1) VneN y (Z) gD ()= Y (Z) ¢® (x) h ) (x)

Théoreme 15.27 — Quotient

Soitn € NU {+-o0}. Soit f,g € €"(D). Si g ne s’annule pas sur D, alors f € ¢"(D).
8
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Théoréeme 15.28 — Composition

Soitn € NU {+eo}. Soit f € €"(D,R) etg € €""(D',R), avec f(D) C D'. Alors go f € ¢"(D).

Démonstration. Non exigible. O

Théoreme 15.29 - Réciproque

Soitn € N*U {00} et f une application bijective de classe ¢ définie sur D. On suppose que la dérivée
premieére f' ne s’annule pas sur D.
Alors I'application réciproque /! est une bijection de classe €.

Démonstration. Non exigible. O

Exemple 20. Soit f une bijection (de D sur f(D)) de classe ¢ dont la dérivée f’ ne s’annule pas sur D. On a

donc, pour touty € f(D),
—1y/ - 1
V= )

On remarque alors que (f -1 ) est dérivable en y par composée et quotient de fonctions dérivables, et que :

Comme on peut le voir, pour que cette expression ait un sens, il suffit que f’ ne s’annule pas (et f” peut donc a
priori s’annuler).

Exemple 21. Soit f : R%, — R définie par f(x) = ¢* +Inx. On admet que f est bijective. Montrer que f ' est de
classe €.

6 Fonctions complexes

La définition de la dérivabilité d’'une fonction complexe est une adaptation naturelle de la notion pour les
fonctions réelles :

| Définition15.30 | __ .
Soit f : D — C. On dit que f est dérivable en a lorsque la fonction x — (x) = f(a) admet une limite finie
— xX—a
en a. On note alors
f/(a) = 11m f(x) _f(a)

x—a xX—a

Cette limite est appelée nombre dérivé de f en a. Si f est dérivable en tout point a € D, on définit alors sa
(fonction) dérivée ' : D — C.

eC E

On peut définir de méme les ensembles 2" (D, C), " (D,C) et €~ (D, C).
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Théoréme 15.31 |

Soitn € NU{+e} et f: D — C.
La fonction f est dans ¢ (D, C) si et seulement si Ref et Imf sont dans €™ (D, R). De plus, sin # +co, on
a

= (Ref)™ +i (im )"

Ce qui ne change pas dans le cadre f : D — C

e Opérations sur les dérivées et les fonctions de classe €” et/ou ¢~ : combinaisons linéaires, produit

(formule de Leibniz), quotient. Pour la composition go f, le cadre est f : D — | R |et g : D' — C pour que
f(D)cD.
e Dérivées a gauche, a droite en a.

Ce qui change dans le cadre f : D — C

e Les notions de maximum, minimum de f n’ont pas de sens car il n’y a pas d’inégalités sur C.

e Rolle et le TAF sont faux : par exemple si f : [O, 271:] — C est définie par f(t) = ¢, alors f est continue sur
[0,27], dérivable sur |0,27[, et f(0) = f(27) = 0 mais f’ ne s’annule pas sur 0,27 . En effet

|f'(t)] = |ie"| =150

e LTAF par contre demeure vrai, les valeurs absolues sont traitées comme des modules :

Théoréeme 15.32 — IAF complexe

Soit f : I — C continue sur / et dérivable sur 1. S'il existe K > 0 tel que pour tout x € Iona |f'(x)| <K,
alors

Ve yel  |f(x)=f() < Klx—y|

Exemple 22. Montrer que pour tous x,y € R, on a ‘eix - eiy‘ <l|x—yl.

En particulier, I'TAF permet de généraliser le résultat selon lequel une fonction de dérivée nulle sur un| intervalle
est constante :

| Théoréme 15.33 |

[e]
Soit f : I — C une fonction continue sur / et dérivable sur /.

o
f est constante (sur I) si et seulement si f = 0 sur /
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7 Méthodes pour les exercices

| Méthode |

Pour montrer qu'une fonction f : D — R est dérivable en un point a de D, on peut :

e Utiliser les opérations usuelles sur les fonctions dérivables :

- La somme / produit / ... de fonctions dérivables en a est dérivable en a.
- Si f = goh avec h dérivable en a et g dérivable en h(a), alors f est dérivable en a.

e Chercher sile taux d’accroissement admet une limite finie en a.

e Appliquer le théoreme de la limite de la dérivée.

Le premier item ci-dessus permet aussi de montrer facilement que f est dérivable (voire de classe ) sur D.

| Méthode |

Pour calculer une dérivée n-ieme, on peut :

e Calculer les premiéres dérivées successives, conjecturer une formule, et la montrer par récurrence.
e Silafonction s’écrit comme un produit, utiliser la formule de Leibniz.

e Transformer I'expression pour faciliter les dérivations successives.
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