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Hypothèse

• I et J sont des intervalles de R non triviaux.

• D et D′ sont des parties de R qui peuvent s’écrire comme une réunion d’un ou plusieurs intervalles
non triviaux, par exemple D = R∗, D = Dtan ou encore D =

[
−3,−2

]
∪R+.

De plus, a est un point de D (donc forcément fini).

1 Compléments sur la dérivabilité

1.1 Dérivable donc continue (mais pas l’inverse !)

Théorème 15.1

Soit f : D → R. Si f est dérivable en a, alors f est continue en a.
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Dérivation

La réciproque est fausse ! Penser aux fonctions typiquement non dérivables, comme x 7→ |x|, x 7→
√

x,
x 7→ arccosx ... qui sont pourtant continues.

Démonstration. Soit f dérivable en a, de sorte que

f (x)− f (a)
x−a

tend vers une limite finie qu’on note ℓ

(on a en fait ℓ= f ′(a)). Supposons par l’absurde que f n’est pas continue en a. Alors f (x) ne tend pas vers f (a)
lorsque x tend vers a. En prenant la négation de la définition de la limite, il existe ε > 0 tel que

∀δ > 0 ∃x ∈ D |x−a| ≤ δ et | f (x)− f (a)|> ε

Pour tout n ∈ N∗, en prenant δ =
1
n
> 0, il existe un réel xn dans D qui vérifie |xn −a| ≤ 1

n
et | f (xn)− f (a)|> ε .

On construit ainsi une suite (xn) qui tend vers a. Par composition de limite, on a
xn −−−−→

n→+∞
a

f (X)− f (a)
X −a

−−−→
X→a

ℓ
=⇒ f (xn)− f (a)

xn −a
−−−−→
n→+∞

ℓ =⇒
∣∣∣∣ f (xn)− f (a)

xn −a

∣∣∣∣−−−−→n→+∞
|ℓ|

Or, comme | f (xn)− f (a)| > ε et |xn − a| → 0+, on peut montrer qu’en fait

∣∣∣∣ f (xn)− f (a)
xn −a

∣∣∣∣ → +∞, ce qui est

absurde car |ℓ| est fini et par unicité de la limite.

1.2 Calcul de limite par le taux d’accroissement

Si f est dérivable en a, alors
f (x)− f (a)

x−a
−−→
x→a

f ′(a). Cela peut permettre de calculer certains types de limites.

Exemple 1. Montrer que lim
x→0

sinx
x

= 1.

On pose f : x 7→ sinx. On a

∀x ̸= 0
sinx

x
=

f (x)− f (0)
x−0

La fonction f est dérivable et pour tout réel x, on a f ′(x) = cos(x). En particulier, f

est dérivable en 0, de sorte que
sinx

x
−−→
x→0

f ′(0). Calculons f ′(0). f De plus, comme

f ′(x) = cos(x), on a f ′(0) = cos(0) = 1

Il est conseillé de toujours poser la (bonne) fonction f pour appliquer cette technique et de calculer
f ′(x) consciencieusement. Sinon vous risquez de vous tromper !

Exemple 2. Calculer lim
x→1

√
3x−

√
3

x−1
.

On pose f : x 7→
√

3x. Soit x ̸= 1. On a
√

3x−
√

3
x−1

=
f (x)− f (1)

x−1
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Dérivation

On peut montrer que f est dérivable sur
]
0,+∞

[
et que pour tout réel x, on a f ′(x) =

3
2
√

3x
.En particulier, comme f est dérivable en 1, on a

lim
x→1

f (x)− f (1)
x−1

= f ′(1) =
3

2
√

3
=

√
3

2

1.3 Fonction dérivée

Définition 15.2

Soit f : D → R une fonction. On dit que f est dérivable si elle est dérivable en tout point de D. On note
alors

f ′ : D → R
x 7→ f ′(x)

On dit que f ′ est l’application dérivée de f ou simplement la dérivée de f .

On note parfois D1(D,R), ou juste D1(D) l’ensemble des fonctions dérivables sur D.

Exemple 3. ◦ La fonction x 7→ 1
x

est dérivable (sur R∗) car elle l’est en tout point a de R∗.

◦ la fonction tan est dérivable (sur Dtan) car elle l’est en tout point de Dtan =
⋃
k∈Z

]
−π

2
+2kπ,

π

2
+2kπ

[
.

La notation ′ est réservée aux fonctions :

Oui : f ′(x) sin′(x) (u2)′ = 2uu′

Non ! : f (x)′
(√

x
)′

(lncos(x))′ =− 1
cosx

cos(x)′

Pour toute partie X ⊂ D, l’assertion “ f est dérivable sur X” ne signifie pas la même chose que “ f
∣∣
X est

dérivable”, cf exemple suivant.

Exemple 4. Soit f la fonction définie sur R par f (x) = |x|.

• Il est clair que f n’est pas dérivable en 0. En particulier, elle n’est dérivable ni sur R−, ni sur R+.

• Cependant, la restriction de f à R+ est dérivable (sur R+), car f |R+ coïncide avec la fonction x 7→ x
restreinte à R+. Idem pour f

∣∣
R−

.

Théorème 15.3

Soit f : D → R. Si f est dérivable (sur D), alors f est continue (sur D).
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Dérivation

1.4 Dérivées à droite et à gauche

Définition 15.4

Soit f : D → R une fonction.

• On dit que f est dérivable à droite en a si la limite suivante existe et est finie :

f ′d(a) := lim
x→a
x>a

f (x)− f (a)
x−a

La valeur f ′d(a) est appelée la dérivée de f à droite en a.

• On dit que f est dérivable à gauche en a si la limite suivante existe et est finie :

f ′g(a) := lim
x→a
x<a

f (x)− f (a)
x−a

La valeur f ′g(a) est appelée la dérivée de f à gauche en a.

Exemple 5. Montrer que la fonction f : x 7→ |x| est dérivable à gauche et à droite en 0 et calculer f ′g(0) et f ′d(0).

Montrons que f est dérivable à droite en 0. Soit x > 0

f (x)− f (0)
x−0

=
|x|
x

= 1 −−−→
x→0+

1

donc f est dérivable à droite en 0 et f ′d(0) = 1. Soit x < 0.

f (x)− f (0)
x−0

=
|x|
x

=−1 −−−→
x→0−

−1

donc f est dérivable à gauche en 0 et f ′g(0) =−1.

Remarque. f est dérivable à gauche (resp. à droite) en a ssi C f admet une demi-tangente à gauche (resp. à
droite) en a. Dans ce cas, la pente de cette demi-tangente est égale à f ′g(a) (resp. f ′d(a)).

Remarque. Les remarques suivantes parlent généralement de dérivée à gauche, mais s’adaptent également pour
les dérivée à droite.

• Pour étudier la dérivabilité à gauche, on étudie donc une limite à gauche du taux d’accroissement. Cepen-
dant :

– Dans certains cas, la limite à gauche du taux n’a pas de sens. Par exemple, si f est définie sur R+, la
notion de dérivée à gauche de f en 0 n’a pas de sens.

– Dans d’autres cas, la limite à gauche du taux coïncide avec la limite usuelle. Par exemple, si f est
définie sur R−, alors f est dérivable à gauche en 0 si et seulement si f est dérivable en 0 et si c’est le
cas, f ′g(0) = f ′(0).

• Si f est dérivable à gauche en a, alors f est continue à gauche en a. En effet,
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Dérivation

Théorème 15.5

Soit f : D → R une fonction. Alors

f est dérivable en a ssi


f est dérivable à gauche en a (si cela a un sens)

f est dérivable à droite en a (si cela a un sens)

f ′g(a) = f ′d(a) (si ces deux valeurs ont un sens)

De plus, lorsque c’est le cas, on a f ′(a) = f ′g(a) = f ′d(a).

Exemple 6. La fonction f : x 7→ |x| est dérivable à gauche et à droite en 0, mais f ′g(0) =−1 et f ′d(0) = 1. Comme
f ′g(0) ̸= f ′d(0), f n’est pas dérivable en 0.

2 Extremum

Définition 15.6 – Rappel : extremum (global)

Soit D une partie de R et f : D → R. On dit que ...

• f admet un maximum (global) en a si ∀x ∈ D f (x)≤ f (a)

• f admet un minimum (global) en a si ∀x ∈ D f (x)≥ f (a)

• f admet un extremum (global) en a si f admet en a un maximum (global) ou un minimum (global).

La valeur maximale de f peut être atteinte en plusieurs points a1,a2, · · · . On distinguera bien LE maxi-
mum de f , i.e. la valeur max f = f (a1) = f (a2) = . . . et LES points a1,a2, · · · EN lesquels le maximum
est atteint.

Définition 15.7 – Extremum local

Soit D une partie de R et f : D → R. On dit que ...

• f admet un maximum local en a si f ≤ f (a) au voisinage de a :

∃η > 0 ∀x ∈ D∩
[
a−η ,a+η

]
f (x)≤ f (a)

• f admet un minimum local en a si f ≥ f (a) au voisinage de a :

∃η > 0 ∀x ∈ D∩
[
a−η ,a+η

]
f (x)≥ f (a)

• f admet un extremum local en a si f admet en a un maximum local ou un minimum local.

Remarque. Un extremum global est un extremum local. La réciproque est fausse : la fonction x 7→ ⌊x⌋ admet un
maximum local en 0 mais ce n’est pas un maximum global.

Si f admet un maximum local (resp. global) en a, alors − f admet un minimum local (resp. global) en a.
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Dérivation

Définition 15.8

Soit f : D → R une fonction. On dit que a est un point critique de f si f est dérivable en a et f ′(a) = 0.

Remarque. Dit autrement, un point critique est un point où f possède une tangente horizontale.

Définition 15.9

Soit a ∈ I. On dit que a est un point intérieur de I si a est un point de I qui n’est pas une extrémité de I.

On note
◦
I l’ensemble des points intérieurs de I.

Si I =
[
0,1

]
, alors les points intérieurs de I sont tous les points de

]
0,1

[
. On a donc

◦
I =

]
0,1

[
.

Théorème 15.10

Soit f : I → R une fonction dérivable.

Si

{
a ∈

◦
I

f admet un extremum local en a
alors a est un point critique de f , i.e. f ′(a) = 0

Jo
Li
De
Ss
In
ff
avec max local, min local et pt critique non extremum, ainsi qu’un extremum au bord

Remarque. La réciproque du Théorème 15.10 est fausse : un point critique n’est pas nécessairement un extremum
local. Par exemple, la fonction f : x 7→ x3 admet 0 pour point critique, mais ce n’est ni un maximum local, ni un
minimum local.

Remarque. Le résultat du Théorème 15.10 tombe en défaut si a est une extrémité de I (donc a /∈
◦
I). Par exemple

la fonction identité sur
[
0,1

]
admet un minimum en 0 et un maximum en 1 alors que ce ne sont pas des points

critiques.

Démonstration. On démontre ce résultat lorsque f admet en a un maximum local. Par définition, il existe η > 0
tel que pour tout x ∈ I ∩

[
a−η ,a+η

]
, on a f (x)≤ f (a), donc

f (x)− f (a)≤ 0

• Si x > a, on a
f (x)− f (a)

x−a
≤ 0. Or, f est dérivable en a, donc dérivable à droite en a. Par passage à la limite

quand x tend vers a+, on, a :

f ′d(a) = lim
x→a+

f (x)− f (a)
x−a

≤ 0

si bien que f ′(a) = f ′d(a)≤ 0.
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Dérivation

• Si x < a, on a
f (x)− f (a)

x−a
≥ 0. Or, f est dérivable en a, donc dérivable à gauche en a. Par passage à la limite

quand x tend vers a−, on, a :

f ′g(a) = lim
x→a−

f (x)− f (a)
x−a

≥ 0

si bien que f ′(a) = f ′g(a)≥ 0.

Finalement, 0 ≤ f ′(a)≤ 0 donc f ′(a) = 0.

Méthode

Pour trouver un extremum global, on peut recourir à un tableau de variations.
Pour un extremum local, cela marche aussi, mais on verra d’autres outils plus précis plus tard.

3 Les grands théorème sur la dérivation

3.1 Théorème de Rolle

Théorème 15.11 – Théorème de Rolle

Soit a,b ∈ R tels que a < b, et f :
[
a,b

]
→ R une fonction telle que

1. f est continue sur
[
a,b

]
2. f est dérivable sur

]
a,b

[
3. f (a) = f (b)

Alors, il existe c ∈
]
a,b

[
tel que f ′(c) = 0.

Faites un joli dessin.
f
f
f
f
f

Démonstration. La fonction f est continue sur le segment
[
a,b

]
, donc par le TBA elle est

bornée et atteint ses bornes. Ainsi, elle atteint son maximum (global) en un point
xM ∈

[
a,b

]
et son minimum (global) en un point xm ∈

[
a,b

]
.

• Si xM ∈
]
a,b

[
, alors comme f est dérivable en xM et que xM est un point intérieur

de
[
a,b

]
, il s’agit d’un point critique. Donc f ′(xM) = 0.

• Si xm ∈
]
a,b

[
, alors comme f est dérivable en xm et que xm est un point intérieur

de
[
a,b

]
, il s’agit d’un point critique. Donc f ′(xm) = 0.

• Si les deux cas précédents ne sont pas vérifiés, alors xm ∈ {a,b} et xM ∈ {a,b}.
Supposons par exemple que xm = a et xM = b, de sorte que f (a)≤ f ≤ f (b). Alors,
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Dérivation

comme f (a) = f (b), on en déduit que f est constante sur
[
a,b

]
. Ainsi, en posant

c =
a+b

2
∈
]
a,b

[
, on a f ′(c) = 0. Les autres cas pour xm et xM se déduisent de

manière similaire.

3.2 Le théorème des accroissements finis

Théorème 15.12 – Théorème des Accroissements Finis (TAF)

Soit a,b ∈ R tels que a < b, et f :
[
a,b

]
→ R une fonction telle que

1. f est continue sur
[
a,b

]
2. f est dérivable sur

]
a,b

[
Alors, il existe c ∈

]
a,b

[
tel que f ′(c) =

f (b)− f (a)
b−a

.

Faites un joli dessin
f
f
f
f
f
f
f

Démonstration. On pose

g :
[
a,b

]
→ R

x 7→ f (x)− f (b)− f (a)
b−a

(x−a)

La fonction g est continue sur
[
a,b

]
et dérivable sur

]
a,b

[
comme somme et produit de telles fonctions. De plus,

g(b) = f (b)− f (b)− f (a)
b−a

(b−a) = f (a)

g(a) = f (a)− f (b)− f (a)
b−a

(a−a) = f (a)

Ainsi, g(b) = g(a). Donc par le théorème de Rolle, il existe c ∈
]
a,b

[
tel que g′(c) = 0.

D’où

0 = g′(c) = f ′(c)− f (b)− f (a)
b−a

On en déduit que f ′(c) =
f (b)− f (a)

b−a
.
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Dérivation

Exemple 7. Montrer que pour tout x > 0, on a
1

x+1
≤ ln(x+1)− ln(x)≤ 1

x
.

On pose f : x 7→ lnx. On a

ln(x+1)− ln(x) =
f (x+1)− f (x)
(x+1)− x

Or, f est continue sur
[
x,x + 1

]
, dérivable sur

]
x,x + 1

[
donc par le TAF, il existe

c ∈
]
x,x+1

[
tel que

f (x+1)− f (x)
(x+1)− x

= f ′(c) =
1
c

Or, x < c < x+1 entraine
1
x
≥ 1

c
= f ′(c)≥ 1

x+1
par décroissance de la fonction x 7→ 1

x
sur R∗

+. Ainsi,
1

x+1
≤ ln(x+1)− ln(x)≤ 1

x

3.3 Dérivation et monotonie

On rappelle que I est un intervalle .

Théorème 15.13

Soit f : I → R une fonction continue sur I et dérivable en tout point intérieur de I. Alors :

• f est croissante sur I si et seulement si f ′ ≥ 0 sur
◦
I.

• f est décroissante sur I si et seulement si f ′ ≤ 0 sur
◦
I.

• f est constante sur I si et seulement si f ′ = 0 sur
◦
I.

Ce théorème tombe en défaut si on ne l’applique pas sur un intervalle. Contre-exemple : la fonction

x 7→ 1
x

a une dérivée négative en tout point de R∗, mais n’est pas décroissante sur R∗.

Démonstration. On ne démontre que la première équivalence. On procède par double implication.

• Supposons f ′ ≥ 0 sur
◦
I et montrons que f est croissante.

Soit a,b ∈ I tels que a < b. Montrons que f (a)≤ f (b). La fonction f est continue

sur
[
a,b

]
(car f l’est sur I) et dérivable sur

]
a,b

[
(car f l’est sur

◦
I) donc par le TAF,

il existe c ∈
]
a,b

[
tel que

f ′(c) =
f (b)− f (a)

b−a
Or par hypothèse f ′(c)≥ 0, et comme b−a > 0, on en déduit f (b)− f (a)≥ 0, si
bien que f (a)≤ f (b). On en conclut que f est croissante.
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Dérivation

• Supposons f croissante. Soit a un point intérieur de I : montrons que f ′(a)≥ 0. Soit x ∈ I tel que x > a (un

tel x existe car a ∈
◦
I). Comme f est croissante,

f (x)− f (a)
x−a

≥ 0

et en passant à la limite quand x tend vers a+, comme f est dérivable en a, on obtient f ′(a)≥ 0.

Théorème 15.14

Soit f : I → R une fonction continue sur I et dérivable sur
◦
I. Les assertions suivantes sont équivalentes :

• f est strictement croissante sur I.

• f ′ ≥ 0 sur
◦
I (i.e. f est croissante), et pour tous a,b ∈ I tels que a < b, on a f ′

∣∣]
a,b
[ ̸≡ 0.

La deuxième condition peut également se réécrire : f ′ est positive sur
◦
I et sur tout intervalle non trivial J, f ′ n’est

pas identiquement nulle sur J. En particulier, si f ′ ≥ 0 et f ′ ne s’annule qu’en un nombre fini de points, alors f
est strictement croissante.

Exemple 8. La fonction x 7→ x− sinx admet pour dérivée la fonction x 7→ 1−cosx, qui est positive et ne s’annule
que sur 2πZ, donc ne s’annule identiquement sur aucun intervalle non trivial. Ainsi, la fonction x 7→ x− sinx est
strictement croissante (sur R).

3.4 Fonction lipschitzienne

Définition 15.15 – Fonction lipschitzienne

Soit f : I → R une fonction et K ∈ R+. On dit que f est K-lipschitzienne si

∀x,y ∈ I | f (x)− f (y)| ≤ K |x− y|

Une fonction f est dite lipschitzienne s’il existe K ∈ R+ tel que f est K-lipschitzienne.

Faites un joli dessin
f
f
f
f
f
f
f
f
f
f

Exemple 9.
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Dérivation

◦ La fonction x 7→ |x| est 1-lipschitzienne (mais aussi 2-lipschitzienne, π-lipschitzienne...) car :

∀x,y ∈ R | |x|− |y| | ≤ 1×|x− y|

◦ La fonction x 7→ x2 n’est pas lipschitzienne, mais sa restriction à
[
−1,1

]
est 2-lipschitzienne car

∀x,y ∈
[
−1,1

] ∣∣x2 − y2∣∣= |(x+ y)(x− y)|
≤ |x+ y|× |x− y|
≤ (|x|+ |y|)×|x− y|
≤ 2 |x− y|

Exemple 10. Montrer que la fonction f : x 7→
√

x n’est pas lipschitzienne.

Supposons par l’absurde que f soit lipschitzienne. Alors il existe K ≥ 0 tel que pour
tous x,y ∈ R+ ∣∣√x−√

y
∣∣≤ K |x− y|

En particulier, avec y = 0, on obtient que pour tout x ≥ 0, on a
√

x ≤ Kx. En particulier,
si x > 0, cela entraine

1 ≤ K
√

x

d’où 1 ≤ lim
x→0

K
√

x = 0. Contradiction. Donc f n’est pas lipschitzienne.

Théorème 15.16

Toute fonction lipschitzienne est continue.

Démonstration. Soit f : I → R une fonction K-lipschitzienne et a ∈ I. Montrons que f est continue en a. On a :

| f (x)− f (a)| ≤ K|x−a| −−→
x→a

0

donc f (x)−−→
x→a

f (a). Ainsi f est continue en a. Par arbitraire sur a, f est continue (sur I).

3.5 Inégalité des accroissements finis

Théorème 15.17 – Inégalité des Accroissements Finis (IAF)

Soit f : I → R une fonction continue sur I et dérivable sur
◦
I. S’il existe K ∈ R+ tel que pour tout x ∈

◦
I, on

a | f ′(x)| ≤ K, alors

∀x,y ∈ I | f (x)− f (y)| ≤ K |x− y| (càd f est K-lipschitzienne)

Démonstration. Soit x,y ∈ I. Montrons que | f (x)− f (y)| ≤ K|x− y|. Si x = y, c’est évident. Si x ̸= y, quitte à
échanger les rôles de x et y, on peut considérer que x < y. Appliquons le TAF à f sur

[
x,y

]
:

• f est continue sur
[
x,y

]
car f l’est sur I.

• f est dérivable sur
]
x,y

[
car tout point de

]
x,y

[
est nécessairement un point intérieur de I (même si x ou y

sont des extrémités de I).
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Ainsi, il existe c ∈
]
x,y

[
tel que

f (x)− f (y)
x− y

= f ′(c) donc

∣∣∣∣ f (x)− f (y)
x− y

∣∣∣∣= ∣∣ f ′(c)
∣∣≤ K

D’où on conclut en multipliant par |x− y| qui est positif.

Remarque. L’implication de l’IAF est en fait une équivalence : si f est K-lipschitzienne (et dérivable en tout
point intérieur de I), alors | f ′| est majorée par K.

Corollaire 15.18

Soit f :
[
a,b

]
→ R de classe C 1. Alors f est K-lipschitzienne avec K = max

x∈
[

a,b
]∣∣ f ′(x)

∣∣.

Démonstration. Comme f est de classe C 1, f ′ est continue sur
[
a,b

]
donc par composition il en va de même

pour | f ′|. Par le théorème des bornes atteintes, la fonction | f ′| est donc bornée sur
[
a,b

]
et atteint ses bornes. En

particulier, elle atteint son maximum et on peut poser

K := max
x∈
[

a,b
]∣∣ f ′(x)

∣∣
Alors, par l’IAF, pour tous x,y ∈

[
a,b

]
, on a bien | f (x)− f (y)| ≤ K|x− y|.

Exemple 11. Montrer que pour tous x,y ∈ R, on a |arctanx− arctany| ≤ |x− y|.
La fonction arctan vérifie, pour tout x ∈ R,

|arctan′(x)|= 1
1+ x2 ≤ 1

donc par l’IAF arctan est 1-lipschitzienne sur R. D’où le résultat.

4 Le théorème de la limite de la dérivée

4.1 Notion de limite épointée

Avant de pouvoir aller plus loin, il faut étendre la notion de limite à un cadre légèrement plus général.

Définition 15.19 – Limite épointée

Soit f : D → R une fonction. On dit que f admet une limite épointée en a si la fonction f
∣∣
D\{a} admet

une limite en a. On la note
lim
x→a
x ̸=a

f (x)

La fonction f est donc définie en a, mais la valeur de f (a) n’a aucune incidence sur l’existence éventuelle et la
valeur de la limite épointée en a.
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Exemple 12. f : x 7→
⌊
−x2⌋ vérifie lim

x→0
x ̸=0

f (x) =−1.

Théorème 15.20

Soit f : D → R une fonction. f admet une limite en a si et seulement si f admet une limite épointée en a
qui vaut f (a). Dans ce cas, on a :

lim
x→a

f (x) = f (a) = lim
x→a
x ̸=a

f (x)

En particulier, on a même que f est continue en a.

Remarque. Ce théorème est particulièrement utile lorsque f (x) a une expression différente lorsque x ̸= a et
lorsque x = a.

Exemple 13. La fonction f : x 7→


ln(1+ x)

x
si x ̸= 0

1 si x = 0
admet une limite en 0 si et seulement si lim

x→0
x ̸=0

f (x) = f (0),

i.e. lim
x→0
x ̸=0

ln(1+ x)
x

= 1. On peut vérifier que c’est bien le cas, donc f admet une limite en 0 et en particulier est

continue en 0 puisque 0 ∈ D f .

Exemple 14. Dans l’Exemple 12, on a lim
x→0
x ̸=0

f (x) =−1 ̸= f (0), donc f n’a pas de limite en 0 (et est encore moins

continue en 0).

Théorème 15.21

Soit f : D → R une fonction. Les assertions suivantes sont équivalentes :

• f admet une limite épointée en a

• f admet une limite à gauche en a (si cela a un sens) et à droite en a (si cela a un sens), et ces deux
limites sont égales (si elles ont toutes les deux un sens).

De plus, lorsque ces assertions sont vérifiées, toutes ces limites sont égales :

lim
x→a
x ̸=a

f (x) = lim
x→a−

f (x) = lim
x→a+

f (x)

4.2 Théorème de la limite de la dérivée

Soit f : D → R une fonction qu’on suppose dérivable sur D\{a}. On souhaite savoir si f est aussi dérivable en a.

On pourrait étudier la limite du taux d’accroissement
f (x)− f (a)

x−a
quand x tend vers a. Mais dans certains (rares)

cas, trouver cette limite est difficile et il est plus simple d’utiliser le résultat suivant pour conclure.
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Théorème 15.22 – Théorème de limite de la dérivée (TLD)

Soit f : D → R une fonction dérivable sur D\{a} et continue en a. Pour tout ℓ ∈ R :

lim
x→a
x ̸=a

f ′(x) = ℓ =⇒ lim
x→a

f (x)− f (a)
x−a

= ℓ

En particulier :

• Si ℓ ∈ R, alors f est dérivable en a et f ′(a) = ℓ.

• Si ℓ=±∞, alors lim
x→a

f (x)− f (a)
x−a

=±∞, et donc f n’est pas dérivable en a.

Autrement dit, si f ′ admet une limite épointée (finie ou non) en a, alors
f (x)− f (a)

x−a
tend vers la même limite en

a.

Remarque. Dans le cas ℓ ∈ R, on a en particulier lim
x→a

f ′(x) = ℓ= f ′(a), de sorte que f ′ est continue en a.

Dans le second cas, on a en particulier que C f admet une tangente verticale en a.

Démonstration. Soit I l’intervalle de D qui contient a. Soit x ∈ I \{a}. On pose

J =

{[
a,x

]
si x > a[

x,a
]

si x < a

Comme I est un intervalle, on a J ⊂ I. Appliquons le TAF à f sur J. f est continue sur D donc en particulier sur J.
De plus f est dérivable sur D\{a} donc est dérivable sur

]
a,x

[
(resp. sur

]
x,a

[
) si x > a (resp. si x < a). Ainsi, le

TAF s’applique : il existe cx strictement compris entre a et x tel que

f ′(cx) =
f (x)− f (a)

x−a

Or, comme cx est strictement compris entre a et x, on a, par composition de limites :
lim
x→a
x ̸=a

cx = a avec cx ̸= a

lim
X→a
X ̸=a

f ′(X) = ℓ
=⇒ lim

x→a
x ̸=a

f ′(cx) = ℓ

Puisque f ′(cx) =
f (x)− f (a)

x−a
, on en déduit que

lim
x→a
(x ̸=a)

f (x)− f (a)
x−a

= ℓ

Pour vérifier si f est dérivable en a, on regarde le plus souvent si le taux d’accroissement
f (x)− f (a)

x−a
admet une

limite finie quand x tend vers a. Cependant, il arrive que cette limite soit compliquée à calculer pour certaines
fonctions f , tandis que la limite de f ′(x) quand x tend vers a est plus simple. Le théorème de la limite de la
dérivée s’avère alors très utile.
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Méthode

Pour déterminer si f est dérivable en a avec le TLD :

1. On calcule f ′(x) pour x “proche de a” mais pas égal à a.

2. On regarde la limite de f ′(x) quand x tend vers a et on conclut par le TLD.

Exemple 15. Montrer que la fonction f : x 7→ cos
(√

x
)

est dérivable en 0 et calculer f ′(0).

f est continue par composée de telles fonctions, donc en particulier f est continue en
0. La fonction x 7→

√
x est dérivable sur R∗

+ et cos est dérivable donc f est dérivable
sur R∗

+ par composée. Pour tout x > 0, on a :

f ′(x) =−sin
(√

x
)
× 1

2
√

x
=−1

2
× sin

√
x√

x

Or, on sait que 
√

x −−→
x→0

0
sinX

X
−−−→
X→0

cos′(0) = 1

donc par composée
sin

√
x√

x
−−→
x→0

1. Ainsi, f ′(x)−−→
x→0
x ̸=0

−1
2

. Par le théorème de la limite

de la dérivée, on en déduit que f est dérivable en 0 et f ′(0) =−1
2

.

5 Fonctions de classe C n

5.1 Définition

Par convention, on note f (0) = f .

Définition 15.23 – Ensembles Dn

Soit n ∈ N∗. On définit (de manière récursive) qu’une fonction f : D → R est n fois dérivable si la fonction
f (n−1) : D → R est dérivable, et la dérivée de cette fonction est alors notée f (n). On a ainsi

f (0) = f f (1) = f ′ f (2) = f ′′ etc.

On note Dn(D,R), ou juste Dn(D), l’ensemble des fonctions n fois dérivables sur D à valeurs dans R.

La valeur de f (n)(a) est appelée la dérivée n-ième de f en a.

Comme f (0) = f , par convention, toute fonction est “0 fois dérivable”. Plus précisément cette assertion n’affirme
rien et elle est considérée comme vraie (vide logique).
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Définition 15.24 – Classe C n et C ∞

Soit f : D → R une fonction et n ∈ N.

• On dit que f est de classe C n si f est n fois dérivable et si f (n) est continue.

• On dit que f est de classe C ∞ si f est de classe C n pour tout n ∈ N.

On note C n(D,R) ou juste C n(D) l’ensemble des fonctions de classe C n sur D à valeurs dans R.
On note C ∞(D,R) ou juste C ∞(D) l’ensemble des fonctions de classe C ∞ sur D à valeurs dans R.

Remarque.

• En particulier C 0(D) = C (D) est l’ensemble des fonctions continues sur D à valeurs dans R.

• Pour tout n ∈ N, on a C n+1(D)⊂ Dn+1(D)⊂ C n(D).

– En effet si f ∈ C n+1(D), alors f est en particulier n+1 fois dérivable et donc f ∈ Dn+1(D)

– Par ailleurs, si f ∈ Dn+1(D), alors f est en particulier n fois dérivable, et comme f (n) est dérivable,
elle est également continue. D’où f ∈ C n(D).

• Plus généralement, on peut écrire :

C 0(D)⊃ C 1(D)⊃ C 2(D)⊃ ...⊃ C ∞(D)

C ∞(D) =
⋂

n∈N
C n(D)

Exemple 16 (Important !). Toute fonction polynômiale est de classe C ∞. Toute fonction rationnelle est de classe
C ∞ (sur son ensemble de définition).

Exemple 17.

◦ Les fonctions exp, ln, cos, sin, tan, arctan... sont de classe C ∞ (sur leur ensemble de définition).

◦ Soit f : x 7→ |x|. On a f ∈ C 0(R) mais f /∈ D1(R) car f n’est pas dérivable en 0.

◦ Soit f : x 7→ x3/2. On a f ∈ C 1(R+) mais f /∈ D2(R+) car pour tout x ≥ 0, f ′(x) =
3
2
√

x, donc f ′ n’est pas

dérivable en 0.

5.2 Calculer une dérivée n-ième

Méthode

Pour calculer la dérivée n-ième d’une fonction f :

1. On trouve d’abord au brouillon une formule de récurrence pour f (n).

2. On démontre cette formule par une récurrence, en n’oubliant pas de justifier la dérivabilité de f (n)

pour calculer f (n+1).

Toutefois, il n’est pas nécessaire de justifier la dérivabilité de f (n) si on a montré au préalable que f est de
classe C ∞.

Exemple 18. Soit n ∈ N. Calculer la dérivée n-ième de la fonction f : x 7→ 1
1+ x

.

f est de classe C ∞ en tant que fonction rationnelle.

Brouillon

f (1)(x) = f ′(x) =− 1
(1+ x)2
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f (2)(x) = (−2)× (−1)
1

(1+ x)3 =
2

(1+ x)3

f (3)(x) = (−3)× 2
(1+ x)4 =

−6
(1+ x)4

Copie Soit x ̸=−1. Montrons par récurrence que l’assertion suivante est vraie pour

tout n ∈ N :

Hn : f (n)(x) =
(−1)nn!
(1+ x)n+1

◦ Pour n = 0, on a f (0)(x) = f (x) =
1

1+ x
et

(−1)nn!
(1+ x)n+1 =

1
1+ x

. Ainsi, H0 est vraie.

◦ Soit n ∈ N. Supposons Hn et montrons Hn+1. Comme

f (n)(x) =
(−1)nn!
(1+ x)n+1

on obtient que

f (n+1)(x) = (−1)nn!× −(n+1)
(1+ x)n+2 =

(−1)n+1(n+1)!
(1+ x)n+2

Finalement, on a bien montré que f (n)(x) =
(−1)nn!
(1+ x)n+1 .

Remarque. On évitera d’écrire “ f (∞) ”, cette fonction ne serait pas bien définie (sauf cas très particuliers...).

5.3 Propriétés des fonctions de classe C n

Théorème 15.25 – Combinaisons linéaires

Soit n ∈ N∪{+∞}. Pour toutes fonctions f ,g ∈ C n(D) et λ ,µ ∈ R, on a λ f + µg ∈ C n(D). De plus, si
n ̸=+∞,

∀x ∈ D (λ f +µg)(n)(x) = λ f (n)(x)+µg(n)(x)

Théorème 15.26 – Produit – Formule de Leibniz

Soit n ∈ N∪{+∞}. Pour toutes fonctions g,h ∈ C n(D), on a gh ∈ C n(D). De plus, si n ̸=+∞,

∀x ∈ D (gh)(n)(x) =
n

∑
k=0

(
n
k

)
g(k)(x)h(n−k)(x)

Exemple 19. Soit f : x 7→ x2eλx avec λ ∈ R. Montrer que f ∈ C ∞(R) et calculer f (n) pour tout n ∈ N.
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On a f = gh avec g : x 7→ x2 et h : x 7→ eλx. Les fonctions g et h sont de classe C ∞ car g
est un polynôme et par composition pour h. De plus, pour tout j ∈N et tout x ∈R, on
a par récurrence immédiate

g( j)(x) =


x2 si j = 0
2x si j = 1
2 si j = 2
0 si j ≥ 3

et h( j)(x) = λ
jeλx

Ainsi, par la formule de Leibniz, pour tout n ∈ N, on a

f (n)(x) =
n

∑
k=0

(
n
k

)
g(k)(x)h(n−k)(x)

◦ Si n ≥ 2, on a

f (n)(x) =
2

∑
k=0

(
n
k

)
g(k)(x)h(n−k)(x)+0

=

(
n
0

)
g(0)(x)h(n)(x)+

(
n
1

)
g(1)(x)h(n−1)(x)+

(
n
2

)
g(2)(x)h(n−2)(x)

= x2
λ

neλx +n×2xλ
n−1eλx +

n(n−1)
2

×2λ
n−2eλx

= eλx
(

x2
λ

n +2nxλ
n−1 +n(n−1)λ n−2

)
◦ Si n ≤ 1, un calcul direct donne :

f (0)(x) = f (x) = x2eλx f (1)(x) = f ′(x) =
(

λx2 +2x
)

eλx

Le calcul ci-dessus nécessite une certaine rigueur. Comme g(k)(x) = 0 pour tout k ≥ 3, on peut être tenté d’écrire :

(!) ∀n ∈ N
n
∑
k=0

(
n
k

)
g(k)(x)h(n−k)(x) =

2
∑
k=0

(
n
k

)
g(k)(x)h(n−k)(x)

Mais ce n’est pas exact pour n ≤ 1. Par exemple pour n = 1, la somme de droite contient le terme (pour k = 2)(
1
2

)
︸︷︷︸
=0

g(2)(x)h(−1)(x)︸ ︷︷ ︸
(?)

Théorème 15.27 – Quotient

Soit n ∈ N∪{+∞}. Soit f ,g ∈ C n(D). Si g ne s’annule pas sur D, alors
f
g
∈ C n(D).
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Théorème 15.28 – Composition

Soit n ∈ N∪{+∞}. Soit f ∈ C n(D,R) et g ∈ C n(D′,R), avec f (D)⊂ D′. Alors g◦ f ∈ C n(D).

Démonstration. Non exigible.

Théorème 15.29 – Réciproque

Soit n ∈ N∗∪{+∞} et f une application bijective de classe C n définie sur D. On suppose que la dérivée
première f ′ ne s’annule pas sur D.
Alors l’application réciproque f−1 est une bijection de classe C n.

Démonstration. Non exigible.

Exemple 20. Soit f une bijection (de D sur f (D)) de classe C 2 dont la dérivée f ′ ne s’annule pas sur D. On a
donc, pour tout y ∈ f (D),

( f−1)′(y) =
1

f ′( f−1(y))

On remarque alors que ( f−1)′ est dérivable en y par composée et quotient de fonctions dérivables, et que :

( f−1)′′(y) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comme on peut le voir, pour que cette expression ait un sens, il suffit que f ′ ne s’annule pas (et f ′′ peut donc a
priori s’annuler).

Exemple 21. Soit f : R∗
+ → R définie par f (x) = ex + lnx. On admet que f est bijective. Montrer que f−1 est de

classe C ∞.

f est de classe C ∞ par somme de telles fonctions, et f ′ : x 7→ ex +
1
x

ne s’annule pas

sur R∗
+. Donc l’application f−1 : R→ R∗

+ est de classe C ∞.

6 Fonctions complexes

La définition de la dérivabilité d’une fonction complexe est une adaptation naturelle de la notion pour les
fonctions réelles :

Définition 15.30

Soit f : D →C. On dit que f est dérivable en a lorsque la fonction x 7→ f (x)− f (a)
x−a

admet une limite finie

en a. On note alors

f ′(a) := lim
x→a

f (x)− f (a)
x−a

∈ C

Cette limite est appelée nombre dérivé de f en a. Si f est dérivable en tout point a ∈ D, on définit alors sa
(fonction) dérivée f ′ : D → C.

On peut définir de même les ensembles Dn(D,C), C n(D,C) et C ∞(D,C).
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Théorème 15.31

Soit n ∈ N∪{+∞} et f : D → C.
La fonction f est dans C n(D,C) si et seulement si Re f et Im f sont dans C n(D,R). De plus, si n ̸=+∞, on
a

f (n) = (Re f )(n)+ i (Im f )(n)

Ce qui ne change pas dans le cadre f : D → C

• Opérations sur les dérivées et les fonctions de classe C n et/ou C ∞ : combinaisons linéaires, produit

(formule de Leibniz), quotient. Pour la composition g◦ f , le cadre est f : D → R et g : D′ → C pour que

f (D)⊂ D′.

• Dérivées à gauche, à droite en a.

Ce qui change dans le cadre f : D → C

• Les notions de maximum, minimum de f n’ont pas de sens car il n’y a pas d’inégalités sur C.

• Rolle et le TAF sont faux : par exemple si f :
[
0,2π

]
→ C est définie par f (t) = eit , alors f est continue sur[

0,2π
]

, dérivable sur
]
0,2π

[
, et f (0) = f (2π) = 0 mais f ′ ne s’annule pas sur

]
0,2π

[
. En effet∣∣ f ′(t)

∣∣= ∣∣ieit
∣∣= 1 ̸= 0

• L’IAF par contre demeure vrai, les valeurs absolues sont traitées comme des modules :

Théorème 15.32 – IAF complexe

Soit f : I → C continue sur I et dérivable sur
◦
I. S’il existe K ≥ 0 tel que pour tout x ∈

◦
I, on a | f ′(x)| ≤ K,

alors
∀x,y ∈ I | f (x)− f (y)| ≤ K|x− y|

Exemple 22. Montrer que pour tous x,y ∈ R, on a
∣∣ei x − ei y

∣∣≤ |x− y|.
On pose f : x 7→ ei x. Alors f est continue et dérivable sur (l’intervalle) R, et pour tout
x ∈ R, on a

f ′(x) = i ei x

On constate que
∣∣ f ′(x)

∣∣≤ 1, de sorte que par l’inégalité des accroissement finis, on a

∀x,y ∈ R | f (x)− f (y)|=
∣∣ei x − ei y∣∣≤ 1×|x− y|

En particulier, l’IAF permet de généraliser le résultat selon lequel une fonction de dérivée nulle sur un intervalle
est constante :

Théorème 15.33

Soit f : I → C une fonction continue sur I et dérivable sur
◦
I.

f est constante (sur I) si et seulement si f ′ = 0 sur
◦
I
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7 Méthodes pour les exercices

Méthode

Pour montrer qu’une fonction f : D → R est dérivable en un point a de D, on peut :

• Utiliser les opérations usuelles sur les fonctions dérivables :

– La somme / produit / ... de fonctions dérivables en a est dérivable en a.

– Si f = g◦h avec h dérivable en a et g dérivable en h(a), alors f est dérivable en a.

• Chercher si le taux d’accroissement admet une limite finie en a.

• Appliquer le théorème de la limite de la dérivée.

Le premier item ci-dessus permet aussi de montrer facilement que f est dérivable (voire de classe C ∞ ) sur D.

Méthode

Pour calculer une dérivée n-ième, on peut :

• Calculer les premières dérivées successives, conjecturer une formule, et la montrer par récurrence.

• Si la fonction s’écrit comme un produit, utiliser la formule de Leibniz.

• Transformer l’expression pour faciliter les dérivations successives.
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